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It is shown how the coincidence site lattice theory, developed originally for grain

boundaries and extended recently to triple junctions, can be applied to more

complex ensembles of crystallites with the cubic crystal structure. These include

quadruple points, multiple junctions of grains and other multicrystal assemblies.

Application of the theory is demonstrated on hypothetical examples, which may

help elucidate some practically important problems.

1. Introduction

In a recent paper (Gertsman, 2001), the present author

formulated a geometrical theory of triple junctions of grains. It

provides a step from our understanding of grain-boundary

structure towards a conception of the structure of polycrystals.

However, most real polycrystalline materials also contain

other types of grain-boundary joints. Thus, if there is more

than one layer of grains in the polycrystal, then it must contain

grain vertices. The simplest of such objects is the quadruple

point, which is the point of contact between four grains and six

grain boundaries or, equivalently, the junction of four triple

junctions. The quadruple point has nine rotational degrees of

freedom (King, 1999) as compared with only three for the

grain boundary. Also, quite often multiple junctions of grain

boundaries exist, where more than three grains (and grain

boundaries) meet along a common line (Kopezky et al., 1991;

Gertsman & Szpunar, 1998). An n-fold junction has 3(n ÿ 1)

rotational degrees of freedom. Nevertheless, such objects can

still be described with the help of the coincidence site lattice

(CSL) theory, which was originally developed for grain

boundaries (e.g. Grimmer et al., 1974). Of course, for the CSL

theory to be applicable to crystallite agglomerates, all consti-

tuent grain boundaries must have the CSL character.1 The

current paper describes an application of the theory to the

grain ensembles built of a limited number of grains having a

cubic crystal lattice.

2. R combination rule for multiple junctions

First, recall that a CSL misorientation between two crystals of

the cubic system can be described as (e.g. Grimmer et al., 1974)

R � 1

�
fag � 1

�

a11 a12 a13

a21 a22 a23

a31 a32 a33

0@ 1A; �1�

where � is the reciprocal density of coincident sites and

all aij are co-prime (i.e. having no common divisor except 1)

integers.

The following theorems describing the combination rules in

the junction of three CSL boundaries were proven in the

earlier paper (Gertsman, 2001).

Theorem 1:

�3 � �1�2=�12; �2�
where �12 is the greatest common divisor (g.c.d.) of the matrix

{b} = {a}1{a}2.

Theorem 2: �12 is the square of a common divisor of �1 and

�2.

Theorem 3: Superposition of three cubic lattices, mutually

rotated in such a way that each pair of the lattices creates a

CSL, generates a triple-junction CSL with the multiplicity

factor

�TJ � ��1�2�3�1=2: �3�

In this paper, we formulate the corresponding relationships

for the multiple junction.

Theorem 1 is still valid for the multiple junction with the

obvious modi®cation (x2.1).

2.1. R combination rule for a multiple junction

In the n-fold junction of n CSL boundaries, the reciprocal

density of coincident sites for each boundary is calculated as

�n �
Qnÿ1

i�1

�i=�n; �4�

where �n is the g.c.d. of the matrix fbg � Qnÿ1
i�1 fagi. (Of course,

we can start numeration from any grain boundary, so any

boundary can be No. 1 or No. n.)

This relationship was proposed by Andreeva and co-

workers (Kopezky et al., 1991; Andreeva & Firsova, 1996);

however, these authors assumed that at least one of the �
values was equal to 1, which is actually not always true. In fact,

1 This notion can be formulated as the requirement that the misorientation
axis is rational and the square of the tangent of the rotation angle is a rational
number or that the rotation matrix contains only rational elements.
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� 6� 1 multiple junctions exist as do � 6� 1 triple junctions (see

Gertsman, 2001).

The proof is analogous to the triple-junction case.

The following equation is valid when all grain orientations

are determined in the same reference system:Qn
i�1

Ri � I; �5�

where I is the identity matrix.

Then, Qnÿ1

i�1

Ri � RT
n : �6�

Here we used the property of cubic (orthonormal) rotations

that the inverse and transpose matrices are the same, i.e.

Rÿ1 = RT.

Using (1), we can re-write (6) asQnÿ1

i�1

fagi=�i � fagTn =�n: �7�

Multiplication of the left-hand side of (7) givesQnÿ1

i�1

fagi=�i � fbg
. Qnÿ1

i�1

�i: �8�

The components of all matrices {a}i are integers, so {b} is an

integral matrix. However, it may still be reducible. If �n is the

g.c.d. of {b}, then from (7) and (8) it follows that fagTn � fbg=�n

and �n �
Qnÿ1

i�1 �i=�n: &

It is easy to see from simple numerical examples (consider

e.g. a �3±�3±�3±�27 quadruple junction) that Theorem 2 for

triple junctions is not valid in the multiple junction case.

Instead we have a less restrictive relationship (x2.2).

2.2. a theorem for multiple junction

�n is the square of an integer factor of
Qnÿ1

i�1 �i.

Of course, it is obvious that �n is an integer factor ofQnÿ1
i�1 �i, otherwise we cannot obtain integer �n [see formula

(4) above]. However, it is not so obvious that it must be a

square.

Any CSL misorientation can be described by a quaternion

of co-prime integers (k, l, m, n) and in the cubic system [see

e.g. Gertsman (2001) for references]:

� � g:o:f:�k2 � l2 �m2 � n2�; �9�
where g.o.f. stands for `the greatest odd factor'.

In an n-fold junction, the misorientation of each boundary

can be calculated through the misorientations of all the other

boundaries [see e.g. (6) above]. Using the quaternion notation,

this can be written as

�K;L;M;N� � Qnÿ1

i�1

�ki; li;mi; ni�: �10�

Even though all the generating quaternions contain co-prime

coef®cients, the product quaternion may still be reducible.

Suppose � is the greatest common odd divisor of (K, L, M, N).

Then,

�n � g:o:f:�K2 � L2 �M2 � N2�=�2: �11�
It can be proven using the method of mathematical induction

that

K2 � L2 �M2 � N2 � Qnÿ1

i�1

�k2
i � l2

i �m2
i � n2

i �: �12�

For n = 2, it can be shown by direct calculation [see equation

(21) in Gertsman (2001)].

Assume equation (12) is true for n = k, i.e.

K2
k � L2

k �M2
k � N2

k �
Qkÿ1

i�1

�k2
i � l2

i �m2
i � n2

i �: �13�

Let us multiply quaternion (Kk, Lk, Mk, Nk) by quaternion

(kk, lk, mk, nk). According to the quaternion multiplication law

[see e.g. equation (21) in Gertsman (2001)], the resultant

quaternion (Kk+1, Lk+1, Mk+1, Nk+1) has the following com-

ponents:

Kk�1 � Kknk � Nkkk � Lkmk ÿMklk

Lk�1 � Mkkk ÿ Kkmk � Nklk � Lknk

Mk�1 � Kklk ÿ Lkkk � Nkmk �Mknk

Nk�1 � Nknk ÿ Kkkk ÿ Lklk ÿMkmk:

�14�

From (14), by direct calculation we obtain

K2
k�1 � L2

k�1 �M2
k�1 � N2

k�1

� �K2
k � L2

k �M2
k � N2

k��k2
k � l2

k �m2
k � n2

k�: �15�
Substituting (13) in (15) yields

�K2
k�1 � L2

k�1 �M2
k�1 � N2

k�1� �
Qk
i�1

�k2
i � l2

i �m2
i � n2

i �;
�16�

which proves (12).

Now, from (9) and (12), we obtainQnÿ1

i�1

�i �
Qnÿ1

i�1

g:o:f:�k2
i � l2

i �m2
i � n2

i �

� g:o:f:
Qnÿ1

i�1

�k2
i � l2

i �m2
i � n2

i �

� g:o:f:�K2 � L2 �M2 � N2�: �17�
From (11) and (17), we ®nd �n �

Qnÿ1
i�1 �i=�

2. &

3. CSL multiplicity factor for multicrystals

Obviously, a lattice of common sites (multi-CSL) can be

formed by superposition of more than three misoriented

crystal lattices. However, if n > 3, then for the same set of

crystal orientations different combinations of grain-boundary

CSLs are possible. The multi-CSL depends on the mutual

orientations of constituent crystallites, but not on how they are

spatially arranged and connected to each other. That is, the

same multi-CSL describes multiple junctions and multicrystals

with different spatial arrangements of grains and boundaries if

the set of crystallite orientations is the same for each con-

®guration. Because of that, the procedure of ®nding the



reciprocal density of coincident sites of the multi-CSL is more

of an algorithm than a simple analytical formula. The

following relationship is suggested:

�multi � g:c:d:
Qn
i�1

�i

� �1=2

k

; �18�

where �Qn
i�1 �i�k represents all k possible multiple junction

arrangements of the given crystal orientations.

Relationship (18) is introduced here as a conjecture and not

a theorem because some propositions used for its derivation

are yet to be rigorously proven. Below we show how this

relationship can be substantiated.

First, one can see that Theorem 3 of Gertsman (2001), see

equation (3) above, satis®es relationship (18) since k � 1 for

the triple junction and g:c:d:��1�2�3�1=2 � ��1�2�3�1=2.

Let us analyse a quadruple junction or a tetracrystal. Recall

(Miyazawa et al., 1996; Gertsman, 2001) that, for a triple

junction of CSL boundaries,

�1 � pq; �2 � qr; �3 � pr; �19�
where p, q, r are positive odd integers.

Consider two adjacent CSL triple junctions sharing one

grain boundary (Fig. 1). Let (19) describe the A±B±C junction,

and for the A±C±D junction a similar relationship can be

written:

�3 � tu; �4 � st; �5 � su; �20�
where s, t, u are again positive odd integers.

Since pr � tu, these four integers can be represented as2

p � p1p2; r � r1r2; t � p1r1; u � p2r2; �21�
where p1, p2, r1, r2 are positive odd integers.

Similarly, if we embed a triangular crystal with orientation

D into the A±B±C tricrystal (Fig. 2a), the corresponding grain-

boundary �'s can be represented as follows:

�1 � p1p2q1q2;

�4 � p2q1r2s;

�2 � q1q2r1r2;

�5 � p2q2r1s;

�3 � p1p2r1r2;

�6 � p1q2r2s:
�22�

Again, all the factors here are positive odd integers.

The crystallite arrangement in Fig. 2(a) contains all six grain

boundaries3 and four triple junctions (one of which, A±B±C, is

a virtual junction) that the four given crystal orientations can

form. The other three con®gurations in Fig. 2 contain the same

elements. Crystallites with four different crystal orientations

can also form three quadruple junctions (Fig. 3).

Arguments analogous to Theorem 3 of Gertsman (2001)

lead to the conclusion that the reciprocal density of coincident

sites of the multi-CSL of the four crystals is given by

�tetra � p1p2q1qr1r2s � pqrs: �23�
Let us calculate the � products for the quadruple junctions

(see Fig. 3):

�1�2�5�6 � p2
1p2

2q2
1q4

2r2
1r2

2s2 � �q2�
tetra�2 �24a�

�1�3�4�5 � p2
1p4

2q2
1q2

2r2
1r2

2s2 � �p2�
tetra�2 �24b�

�2�3�4�6 � p2
1p2

2q2
1q2

2r2
1r4

2s2 � �r2�
tetra�2: �24c�

Equations (24) correspond to relationship (18) if

g:c:d:�p2; q2; r2� � 1: �25�
Suppose it is not so, i.e.

g:c:d:�p2; q2; r2� � x 6� 1; p2 � xp02; q2 � xq02; r2 � xr02:

�26�
Introduce

p01 � xp1; q01 � xq1; r01 � xr1; s0 � xs: �27�
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Figure 1
Two adjacent triple junctions of CSL boundaries.

Figure 2
Tetracrystals with maximum number of triple junctions.

Figure 3
Three possible quadruple junctions with the same crystal orientations of
the four crystallites.

2 Miyazawa et al. (1996) have implied that it is always the case that p = t and
r = u (see Fig. 1 in their paper). Therefore, a number of possible combinations
of � values is missing in their Table 2.
3 Remember that grain-boundary planes are not included in our analyses and
grain joints are characterized entirely by crystallite misorientations.
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Then,

�1 � p01p02q01q02;

�4 � p02q01r02s0;

�2 � q01q02r01r02;

�5 � p02q02r01s0;

�3 � p01p02r01r02;

�6 � p01q02r02s0:
�28�

This would mean that the representation (22) of the six �i by

the factors p1, p2, . . . , s is not unique, which is, apparently, not

true.4 Then, x = 1 and (18) is valid.

Now, consider what occurs if a ®fth crystallite is added to

the system. For example, take the quadruple junction shown in

Fig. 3(a) with grain boundaries characterized by �1, �2, �5, �6

[see (22)] and embed crystal E into it (Fig. 4). The new grain-

boundary misorientations can be represented as

�7 � p2q1r1t; �8 � p2q2r2t; �9 � r1r2st; �10 � p1q2r1t:

�29�
In this case,

�penta � p1p2q1qr1r2st � pqrst: �30�
Calculations (omitted here to save space) of the � products

for all 12 possible quintuple junctions again con®rm rela-

tionship (18).

Evidently, an addition of a new crystal orientation to the

system appends a new (positive odd) factor to �multi. Thus, for

an ensemble of n crystallites,

�multi � Qn
i�1

mi; �31�

where mi are divisors of grain-boundary �'s.

Apparently, relationship (18) is then valid for any n. Any

multicrystal can be topologically transformed into a multiple

junction: a continuous chain of grain boundaries can shrink

into a common line, thus reducing a multicrystal or grain

cluster to a multiple junction. Of course, the number of

misorientations n in each case is equal to the number of

different crystal orientations in the system.

Let us check on a concrete example how the algorithm

works. Consider four crystals having the following orientations

(all are expressed in the coordinate system of crystal A):

A �
1 0 0

0 1 0

0 0 1

0B@
1CA;

C � 1

27

25 2 ÿ10

2 25 10

10 ÿ10 23

0B@
1CA;

B � 1

3

2 1 ÿ2

1 2 2

2 ÿ2 1

0B@
1CA;

D � 1

9

8 1 4

1 8 ÿ4

ÿ4 4 7

0B@
1CA:
�32�

One can easily ®nd that mutual misorientations between the

crystals are:

RAB � �3;

RBC � �9;

RAC � �27a;

RBD � �3;

RAD � �9;

RCD � �3:
�33�

The solution of relationships (22) in this case is p1 � 3, p2 � 1,

q1 � 1, q2 � 1, r1 � 3, r2 � 3, s � 1. Then, from (23),

�tetra � 27. Fig. 5 displays possible planar arrangements of the

four crystallites. Note that the con®gurations in the second and

third columns topologically represent parts of the con®gura-

tions shown in Fig. 2. Calculating (
Qn

i�1 �i�1=2 for the quad-

ruple junctions in Figs. 5(a),(d),(g) gives 27, 27 and 81,

respectively. Therefore, the rule expressed by relationship (18)

is satis®ed. That the superposition of the four given crystal

lattices produces a multi-CSL with � = 27 is evident, e.g. from

Fig. 5(c); the CSL of boundary A=C coincides with the triple-

junction CSLs of junctions A±B±C and A±C±D, i.e. it is a

common sublattice of all the four crystal lattices. Considera-

tion of other numerical examples, including crystallite

arrangements with n > 4 as well as with � 6� 1 triple junctions

con®rms the algorithm for ®nding the multiplicity factor

expressed by equation (18).

Figure 4
Pentacrystal.

Figure 5
Planar arrangements of four crystallites producing three �3, two �9 and
one �27 misorientation.

4 If this statement were proven and not introduced as a proposition, then
equation (18) would be proven as a theorem, at least for the case n = 4.



It is possible to formally introduce the CSL of the poly-

crystal with the multiplicity factor calculated according to

relationships (18) and (31). Of course, in most practical cases,

�multi would be an astronomical number. However, this

concept might be useful in some special cases, such as certain

grain clusters or specially prepared thin-®lm structures. For

example, hypothetically one can fabricate a polycrystalline

®lm with only three different orientations of crystallites. Let us

take the following three crystal orientations:

A �
1 0 0

0 1 0

0 0 1

0B@
1CA; B � 1

3

2 1 ÿ2

1 2 2

2 ÿ2 1

0B@
1CA;

C � 1

3

1 2 ÿ2

2 1 2

2 ÿ2 ÿ1

0B@
1CA: �34�

Then, the misorientations between the crystals are:

RAB � �3; RAC � �3; RBC � �9: �35�

A schematic of the two-dimensional microstructure built of

such crystallites is shown in Fig. 6. For simplicity, it is drawn

consisting of regular hexagons. The grain shapes are not

important, but it is essential that there are only triple junctions

in the network. The triple junctions in this microstructure

correspond to the case considered in Fig. 5 of Dimitrakopulos

& Karakostas (1996). It is easy to see that this polycrystal has

�multi � 9 (� �GB � 9).

Miyazawa et al. (1996) have suggested another variant of a

two-dimensional network built of only �3 and �9 grain

boundaries. The four constituent orientations can be repre-

sented as

A �
1 0 0

0 1 0

0 0 1

0B@
1CA

C � 1

3

ÿ1 2 ÿ2

2 ÿ1 ÿ2

ÿ2 ÿ2 ÿ1

0B@
1CA

B � 1

3

ÿ1 2 2

2 ÿ1 2

2 2 ÿ1

0B@
1CA

D � 1

3

ÿ1 ÿ2 2

ÿ2 ÿ1 ÿ2

2 ÿ2 ÿ1

0B@
1CA:
�36�

The misorientations between the crystallites are

RAB � �3;

RBC � �9;

RAC � �3;

RBD � �9;

RAD � �3;

RCD � �9:
�37�

The only triple junctions possible in the network built of these

crystallites are �3±�3±�9 and �9±�9±�9 [see e.g. Fig. 2 of

Miyazawa et al. (1996) as an illustration]. For such a network,

�multi � 27 (� �TJ � 27).

It is possible to construct other two-dimensional networks

having only �3 and �9 boundaries. An example is shown in

Fig. 7. Its principal difference from the microstructure

presented in Fig. 6 is that there are four different crystallite

orientations, which could be represented e.g. in form (32). One

of the mutual misorientations in this case is �27a [see (33)],

but there are no such boundaries in the microstructure

because crystallites with orientations A and C are nowhere

adjacent. The triple junctions in this microstructure corre-

spond to the case considered in Fig. 8 of Dimitrakopulos &

Karakostas (1996). It is certainly possible to generate �27a

grain boundaries in this network by simple topological trans-

formations. The microstructure in Fig. 7 (and all others

obtained from it by transformations retaining the four crystal

orientations) can be described by �multi � 27 (� �GB � 27a).

4. Analysis of quadruple point

When considering a common CSL, the crystallite assemblage

does not necessarily have to be two-dimensional. Thus, the

Acta Cryst. (2001). A57, 649±655 Gertsman � CSL theory of ensembles 653
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Figure 6
Two-dimensional network of �3 and �9 boundaries with �multi = 9.

Figure 7
Two-dimensional network of �3 and �9 boundaries with �multi = 27
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same relationships (18) and (31) are applicable to grain

vertices. Here we analyse a practically important example of

such a vertex, the quadruple point (Fig. 8). Six grain bound-

aries meet at such a point but the misorientations of only three

of them are independent. Assume that the misorientations of

three boundaries are known, e.g. A=D is described by �6, B=D

by �4 and C=D by �5 (A, B, C being the three `top' crystallites

and D the `bottom' grain, see Fig. 8). Of course, it is not

essential which misorientations are speci®ed. What is essential

is that the given independent misorientations do not belong to

the same triple junction because in this case only two of them

would be independent. Given the three misorientations, one

can calculate the remaining three because each of the four

triple junctions contains a pair of the speci®ed boundaries.

Thus, � values are determined through relationship (2), i.e. for

misorientations A=B, B=C and A=C, respectively, we have:

�1 � �4�6=�46; �2 � �4�5=�45; �3 � �5�6=�56: �38�
One can notice that the two-dimensional schematics shown

above in Fig. 2 can be used to represent planar sections of the

quadruple point arrangement of the four crystallites. For

example, a section perpendicular to the A±B±C triple junction

made below the quadruple point gives the con®guration

shown in Fig. 2(a). Hence, relationships (22) can be used to

represent the �'s of the grain boundaries forming the quad-

ruple point.

Consider transformations of the quadruple point into

orientationally equivalent quadruple junctions. The transfor-

mation consists in cutting a wedge in the A±B±C tricrystal and

replacing it with a wedge-shaped crystal having the D orien-

tation. Fig. 3 above may serve as an illustration of the three

topologically possible variants. The (
Qn

i�1 �i�1=2 values for

these variants are

��1�2�5�6�1=2 � �4�5�6=��45�46�1=2 �39a�
��1�3�4�5�1=2 � �4�5�6=��46�56�1=2 �39b�
��2�3�4�6�1=2 � �4�5�6=��45�56�1=2: �39c�

The CSL multiplicity factor of the quadruple point, �QP, is

given by the g.c.d. of the three integers expressed by equations

(39). Note that the right-hand parts of equations (39) contain

only the parameters describing grain boundaries A=D, B=D

and C=D. That is, �QP is fully determined by the `pyramidal'

grain boundaries, i.e. the boundaries of the same crystallite

having a common vertex. Of course, any one of the four

pyramidal groups of boundaries forming the quadruple point

can be used for calculations.

As an example, let us construct a quadruple point

comprising only �3 and �9 grain boundaries. Assume that the

boundaries in Fig. 8 have the following misorientations: A=D,

B=D and C=D, all � � 3. Then, from (38), boundaries A=B,

B=C and A=C all have misorientations � � 9. Thus, three �3

and three �9 boundaries meet in this quadruple point. In this

case, p1 � 3, p2 � 1, q1 � 3, q2 � 1, r1 � 3, r2 � 1, s � 1. Any

method of calculation gives the multiplicity factor for the

quadruple point CSL �QP � 27. A hypothetical polycrystal

built of Kelvin's tetrakaidecahedra presented in Fig. 6 of

Miyazawa et al. (1996) have only four different crystal orien-

tations and contains only the quadruple points of the type we

have just considered. In that case, �multi � 27 for the whole

polycrystal.

It is also possible to have a quadruple point having all six �9

boundaries. In this case, �QP � 81.

At ®rst glance, it seems that it is also possible to assemble

four �3 and two �9 boundaries in a quadruple point.

However, if the two �9 boundaries belonged to the same

triple junction, then relationships expressed by (2) would not

be satis®ed for all four triple junctions in the system, since

there would be two impossible triplets: �3±�3±�3 and �3±

�9±�9. Then it looks as if the following combination is

possible. Suppose that boundaries A=D and B=C in Fig. 8 have

� = 9 and all the others � = 3. In this case, each triple junction

considered separately seems to satisfy relationship (2).

However, four different crystal orientations cannot form four

�3 and two �9 misorientations. The maximum number of �3

misorientations formed by four different orientations is three,

with two �9s and one �27. Relationships (32) and (33)

represent a variant with the �27a grain-boundary misori-

entation. A variant containing �27b can be represented for

example by the following crystal orientations:

A �
1 0 0

0 1 0

0 0 1

0B@
1CA;

C � 1

27

26 2 7

2 23 ÿ14

ÿ7 14 22

0B@
1CA;

B � 1

3

2 2 ÿ1

2 ÿ1 2

1 ÿ2 ÿ2

0B@
1CA;

D � 1

9

7 4 4

4 1 ÿ8

ÿ4 8 ÿ1

0B@
1CA;
�40�

with the following misorientations between the crystals:

RAB � �3;

RBC � �9;

RAC � �27b;

RBD � �3;

RAD � �9;

RCD � �3:
�41�

Figs. 5 and 7 can still serve as schematics for this variant. The

only possibility to have only �3 and �9 misorientations in

proportion 2:1 is to have just three crystal orientations, as in

Fig. 6. However, it is impossible to build a three-dimensional

microstructure out of three crystal orientations. Hence, the
Figure 8
Quadruple point.



quadruple point consisting of four �3 and two �9 boundaries

is impossible.

This apparently minor conclusion may have a rather

important implication for the grain-boundary engineering

approach (e.g. Watanabe, 1984). This term stands for the

manipulation of the polycrystal properties through altering

the grain-boundary distribution. The ultimate goal is to create

such a set of grain boundaries that would resist damage

propagation (such as cracking and corrosion) along the grain-

boundary network. The proportion and spatial arrangement of

damage-resistant boundaries are of primary importance for

this. Palumbo et al. (1992) proposed that the `theoretical limit'

for the fraction of �3 boundaries, which are supposedly the

most damage resistant, in the polycrystal is 2=3, and this ®gure

has been used in the subsequent models. The 2=3 limit is based

on the consideration of the triple junction as the building

block of the polycrystal and it has been projected to the three-

dimensional case as well. However, this is true only for

virtually two-dimensional microstructures, examples of which

are presented in Figs. 6 and 7. The quadruple point should be

considered as the smallest element retaining three-dimen-

sional polycrystalline properties. The examples analyzed

above demonstrate that the fraction of �3 boundaries in the

three-dimensional polycrystal cannot exceed 1
2 (if there are

no n > 3 junctions).5 Furthermore, if the 4 � �3 + 2 � �9

quadruple point were possible, then the two �9 boundaries in

it would be connected only at one point. The above analysis

shows, however, that there should be a continuous surface of

�9 boundaries in the three-dimensional polycrystal [see e.g.

Fig. 6 of Miyazawa et al. (1996) as an illustration]. Recent

experimental study (Gertsman & Bruemmer, 2001) has shown

that, while �3 boundaries are resistant to intergranular stress

corrosion cracking in many practically important materials, �9

boundaries are not. Therefore, having a continuous surface of

�9 boundaries may be detrimental since they could provide

easy paths for intergranular damage propagation even if the

`twin-limited' microstructure with the maximum possible

proportion of �3 boundaries were attained. Hence, the

primary goal of grain-boundary engineering should be

understanding the lack of damage resistance of the �9

boundary.
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